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Abstract. Reaction-diffusion systems which include processes of the formA + A → A or
A+A→ ∅ are characterized by the appearance of ‘imaginary’ multiplicative noise terms in an
effective Langevin-type description. However, if ‘real’ as well as ‘imaginary’ noise is present,
then competition between the two could potentially lead to novel behaviour. We thus investigate
the asymptotic properties of the following two ‘mixed noise’ reaction-diffusion systems. The
first is a combination of the annihilation and scattering processes 2A→ ∅, 2A→ 2B, 2B → 2A,
and 2B → ∅. We demonstrate (to all orders in perturbation theory) that this system belongs
to the same universality class as the single species annihilation reaction 2A→ ∅. Our second
system consists of competing annihilation and fission processes, 2A→ ∅ and 2A→ (n+2)A, a
model which exhibits a transition between active and absorbing phases. However, this transition
and the active phase are not accessible to perturbative methods, as the field theory describing
these reactions is shown to be non-renormalizable. This corresponds to the fact that there is
no stationary state in the active phase, where the particle density diverges at finite times. We
discuss the implications of our analysis for a recent study of another active/absorbing transition
in a system with multiplicative noise.

1. Introduction

Recently the effects of fluctuations in reaction-diffusion systems have attracted considerable
attention (for reviews, see [1, 2]). In sufficiently low spatial dimensions the presence of
microscopic particle density fluctuations causes traditional approaches, such as mean-field
rate equations, to break down. This has led to the introduction of field-theoretic methods,
based on ‘Hamiltonian’ representations of the associated classical master equation [3–5].
These methods allow fluctuations to be handled in a systematic manner. The first system
to be analysed in this way was the single species annihilation reactionA + A→ ∅ [6, 7]
where it was shown with renormalization-group (RG) methods that for dimensionsd < 2,
the average densityn(t) decays to zero at large times according to the power law

n(t) ∼ Edt−d/2 (1)

with Ed denoting a universal amplitude (for uncorrelated initial conditions), whilen(t) ∼
E2t
−1 ln t in d = 2. Furthermore, Peliti [6] has demonstrated that the coagulation reaction
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A + A → A belongs to the same universality class as the pure annihilation process
A + A → ∅. Physically the anomalously slow decay of equation (1) results from the
anticorrelation of particles in low dimensions. Due to the ‘re-entrancy’ property of random
walks ford 6 2, once two particles are in close proximity they will then tend to react rather
quickly. Hence, at large times the remaining (unreacted) particles are likely to be situated
far from their nearest neighbours (i.e. the particles become anticorrelated).

Markedly more complex behaviour may arise once particle production processes are
also permitted. For example, the ‘branching and annihilating random walk’ (BARW) system
defined by the reactions 2A→ ∅ andA→ (m+ 1)A, displays a dynamic phase transition
between an ‘active’ (n(t) → ns > 0 for t → ∞) and an ‘inactive and absorbing’ state
(n(t) → 0 for t → ∞), with a remarkable difference between the cases of odd and even
number of offspringm [8, 9]. For oddm andd 6 2 the transition is basically characterized
by the critical exponents of directed percolation (DP) [10–13], whereas for evenm and
d < d ′c ≈ 4

3 the phase transition is described by a new universality class, with the density in
the entire absorbing phase decaying according to the power law in equation (1) [8, 9, 14].

A powerful method for the analysis of such systems is provided by the RG improved
perturbation expansion [7, 15, 16]. However, once a field-theoretic action for the system has
been derived (from a microscopic master equation), it is also possible to write down effective
Langevin-type equations, where the form of the noise can now be specified precisely, without
any recourse to assumptions and approximations [2]. The nature of the noise can look
somewhat peculiar in this representation, for example in theA+ A→ ∅ reaction we have
the exact equation for the fielda(x, t):

∂ta(x, t) = D∇2a(x, t)− 2λa(x, t)2+ a(x, t)η(x, t) (2)

whereD is the diffusion constant,λ is the reaction rate, and

〈η(x, t)〉 = 0 〈η(x, t)η(x ′, t ′)〉 = −2λδd(x − x ′)δ(t − t ′). (3)

Hence the noiseη is imaginary, a rather counterintuitive result. Recently Grinsteinet al
[17] studied an equation superficially similar to that given above, with the aim to model
active/absorbing transitions in autocatalytic chemical processes. In the special case of a
scalar field with a quadratic nonlinearity, their model is defined by the equation

∂ta(x, t) = D∇2a(x, t)− ra(x, t)− ua(x, t)2+ a(x, t)η(x, t) (4)

where

〈η(x, t)〉 = 0 〈η(x, t)η(x ′, t ′)〉 = 2νδd(x − x ′)δ(t − t ′). (5)

Note that the noise in equation (5) has the opposite sign to that considered previously (i.e.
the noise of [17] isreal). However, this is an important point since a positive sign in the
noise correlator leads to divergences in the renormalized parameters of the theory:

νR = Zν
uR = Zu

with Z = 1

1− νId(r) and Id(r) =
∫

ddk

(2π)d
1

r +Dk2
. (6)

Hence, new singularities emerge when the denominator ofZ vanishes. These divergences
have not been present in earlier field-theoretic studies of reaction-diffusion systems.
Certainly if the noise in the model of [17] was resulting from the reactionA+ A→ ∅, its
correlator should have anegativesign, as described above (and henceno extra divergences
would appear, rendering much of the interesting behaviour in [17] obsolete). It is therefore
not clear to us how the real multiplicative noise of equations (4) and (5) could be theonly
type generated—we believe that internal, imaginary reaction noise should generically be



‘Real’ versus ‘imaginary’ noise in diffusion-limited reactions 7723

present as well. Consequently the physical mechanism behind the noise analysed in [17]
remains somewhat obscure.

One of the objects of this paper is to see if equations similar to that analysed by
Grinsteinet al [17] (with real noise, and hence potentially novel behaviour) can be derived
consistently for certain reaction-diffusion systems using field-theoretic methods. Potentially
at least, in an emerging competition between ‘real’ and ‘imaginary’ noise contributions, the
‘real’ component might prevail in certain circumstances, conceivably leading to the scenario
discussed in [17]. However, our main finding here is that although we have analysed two
systems where the noise correlator has both positive and negative components, we have
been unable to recover the new features discussed in [17]. In fact, in the first of our
model systems, a combination of two-particle annihilation and scattering processes for the
speciesA andB, the (‘imaginary’) reaction noise dominates the long-time behaviour, which
is described by the asymptotic power law (1). Neither can the ‘imaginary’ noise terms be
neglected in our second reaction-diffusion system, namely combined annihilation and fission
processes of a single speciesA. In this system a perturbative RG analysis breaks down in
the active phase and at the dynamical phase transition separating it from the inactive state.
Therefore although we can only address the inactive phase, which is again governed by
the pure annihilation model, we believe this system cannot reproduce any of the features in
[17].

In section 2, we present a more thorough discussion of how ‘imaginary’ noise terms
emerge in processes dominated by two-particle annihilation reactions. On the other hand,
problems belonging to the DP universality class, as described by Reggeon field theory
[10–13], can be faithfully represented by a simple Langevin equation for the local particle
density with ‘real’ noise. In section 3, we present our scattering/annihilation model, which
we first analyse to one-loop order, and then to all orders in perturbation theory by solving
the coupled Bethe–Salpeter equations for the vertices. In section 4, we proceed to discuss
the annihilation/fission reaction system, and show that while its properties in the inactive
state may be analysed using field-theoretic methods, this is not the case in the active phase
or at the dynamic transition itself. Finally, we summarize and discuss our results in the light
of the recently proposed transition scenario for ‘real’ multiplicative noise problems [17].

2. ‘Real’ versus ‘imaginary’ noise in reaction-diffusion systems

Before turning to our investigation of models with competing ‘real’ and ‘imaginary’ noise
terms, we briefly outline and review the general issue of how to systematically include
fluctuation effects in reaction-diffusion systems. Above the upper critical dimension, a
qualitatively correct analysis may be obtained from the associated mean-field rate equations
for the average particle densities. Below this dimension, where fluctuations become
important, it is tempting to apply a Langevin equation approach, motivated by the success
of this technique in equilibrium critical dynamics. However, one has to be aware that
these typically irreversible reactions constitute a dynamical system far away from thermal
equilibrium. Thus, there is no fluctuation–dissipation theorem available which could serve
as a guide to the appropriate form of the Langevin noise correlations. One could of course
just try the simplest ansatz, namely some form of white noise multiplicatively coupled to a
certain power of the particle densities, in order to ensure that all fluctuations vanish when
there are no particles left (i.e. in the absorbing state). But, as we shall see shortly, at least
for processes dominated by two-particle annihilation reactions, this generically leads to an
incorrect analysis.

Thus, in order to systematically include the effects of microscopic density fluctuations
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in low dimensions, one can instead start with the corresponding classical master equation,
then represent this stochastic process by the action of second-quantized bosonic operators,
and finally use a coherent-state path integral representation to map this system onto a field
theory. This mapping itself is a standard procedure, and is described in detail in [2, 4, 5, 7],
for instance. Apart from the continuum limit that is usually taken, this procedure provides
an exactmapping of the initial master equation, and involves no assumptions whatsoever
regarding the form of the noise, the relevance or irrelevance of certain terms etc. Note
that the resulting bosonic theory only applies to systems where there isno restriction on
the particle occupation number in the microscopic model. For the description of exclusion
processes where the site occupation numbers are restricted to 0 or 1, obviously a fermionic
representation is more useful.

For example, for the simple two-particle annihilation reactionA+ A→ ∅ the ensuing
field-theoretic action reads

S =
∫

ddx
∫

dt [â(∂t −D∇2)a − λ(1− â2)a2] (7)

where we omit boundary terms relating to the initial conditions and the projection state. Here
D denotes the diffusion constant,λ denotes the annihilation rate, andâ(x, t) and a(x, t)
are bosonic fields. The stationarity conditions (‘classical field equations’)δS/δa = 0 and
δS/δâ = 0 yield, respectively,̂a = 1 and the mean-field rate equation∂ta = D∇2a−2λa2.
Thus, within the mean-field approximation we can identifya(x, t) with the local ‘coarse-
grained’ particle density. However, fluctuations ina(x, t) may not be simply related to
density variations, as can be seen by performing the shiftâ = 1+ ā,

S =
∫

ddx
∫

dt [ā(∂t −D∇2)a + 2λāa2+ λā2a2]. (8)

Integrating out the ‘response’ field̄a in the functional integral
∫
DaDā exp(−S) then

leads precisely to equation (2) with thenegative noise correlator (3). Physically this
counterintuitive result corresponds to the anticorrelation of particles in low dimensions.
Furthermore, power counting reveals that this noise, which originates from the quartic term
in the above action, becomes relevant below a critical dimensiondc = 2. Because of this
pure imaginary noise,a(x, t) clearly cannot represent a physical density variable. Although
〈a(x, t)〉 is equal to the mean densityn(x, t), similar relations do not hold for higher
correlators, see [2]. Moreover, sincea(x, t) is not the density field, this means that the
noise must also take a non-standard form—in fact in equation (3)η represents only the
contribution to the overall noise from the reaction process. In reality, of course, diffusive
and reaction noise can never be disentangled from one another, and consequently there is no
particular reason why the noise in equation (3) should be ‘real’, i.e. described by a strictly
positive correlator.

However, it is possible to give descriptions where the diffusive noise does appear
explicitly. One approach begins with a Langevin equation including both real reaction
noise and diffusive noise. In this case the fielda(x, t) represents a coarse-grained local
density. This is the approach taken, for example, by Janssen [12]. A second possibility is to
begin with representation (7) and then obtain anequivalentdescription in terms of ‘density’
variables by considering the canonical transformationa = exp(−ρ̃)ρ, â = exp(ρ̃), âa = ρ
(see [13]). The resulting effective action in terms of the new ‘density’ fieldsρ and ρ̃ then
includes a term∝ −ρ̃2ρ2 which corresponds to pure real noise. However, the ensuing field
theory contains an extra ‘diffusion noise’ contribution.

Hence, we see that the ‘naive’ Langevin equation (i.e. equation (2), but with a positive
noise correlator and no diffusion noise) does not provide an appropriate effective description
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of the above system. On the other hand, for the standard Gribov processA→ ∅,A→ A+A,
A+ A→ A [12, 13], the action in terms of the shifted fields reads

S =
∫

ddx
∫

dt [ā[∂t +D(r −∇2)]a − σ ā2a + λāa2+ λā2a2]. (9)

HereD and λ represent the diffusion constant and annihilation rate as before,σ is the
branching rate, andr = (µ−σ)/D whereµ denotes the spontaneous decay rate. Integrating
out the response field now yields

∂ta(x, t) = D(∇2− r)a(x, t)− λa(x, t)2+ η(x, t) (10)

with

〈η(x, t)〉 = 0 〈η(x, t)η(x ′, t ′)〉 = 2[σa(x, t)− λa(x, t)2]δd(x − x ′)δ(t − t ′). (11)

It should be noted, however, that the effective coupling entering the perturbation expansion
is actually∝ σλ, which leads to an upper critical dimensiondc = 4. Consequently, the
termλā2a2 becomes irrelevant, and we are left with a pure positive definite noise correlator
∝ σa(x, t) (or ‘square-root’ multiplicative noise, if we replaceη with

√
aη′). After a simple

rescaling, the action is readily mapped onto Reggeon field theory for directed percolation
[10–13]. Thus, here we encounter the generic case wherea(x, t) can be identified with
a coarse-grained density field. Physically, the above reactions lead to particle clustering,
and local densities indeed constitute a natural choice for the order parameter field. We also
remark that the signs and magnitudes of the prefactors (which may even be chosen to be
imaginary) of the cubic nonlinearities in the action (9) do not matterprovided their product
−σλ remains real and negative.

In the above analysis, we have brought out the contrasting features of two categories of
reaction-diffusion systems—containing either imaginary (anticorrelating) or real (clustering)
noise. However, reaction-diffusion systems with a multiplicative noise term∝ aη are
characteristically governed by pair reaction processes and thus have ‘imaginary’ noise.
This is in contrast to the ansatz in [17]. Of course, one might argue that if there areboth
‘real’ and ‘imaginary’ noise contributions present, then the ‘real’ parts might prevail and
lead to the scenario discussed in [17]. This possibility motivates the following two case
studies of combined scattering/annihilation and annihilation/fission reactions to which we
now turn our attention.

3. The scattering and annihilation process

The first reaction-diffusion system we want to consider consists of the following four reaction
processes

A+ A→ ∅ A+ A→ B + B B + B → A+ A and B + B → ∅
(12)

which occur at ratesλAA, λAB , λBA, andλBB , respectively, and with diffusion constants
DA andDB for theA andB particles. We choose uncorrelated initial conditions where the
A andB particles are distributed randomly. Physically the above reaction scheme might
occur if theA particles could undergo a scattering process turning intoB particles, and vice
versa, in addition to the presence of the annihilation reactions. In order to systematically
include the effects of microscopic density fluctuations in low dimensions, we represent the
corresponding master equation by a coherent-state path integral (see section 2). In terms
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of the continuous fieldsa, ā, b, b̄, the diffusivitiesDi 6= 0, continuum reaction rates{λij },
and the initial homogeneous densitiesni (wherei, j = A,B), the action reads (fort > 0):

S =
∫

ddx
∫

dt [ā(∂t −DA∇2)a + b̄(∂t −DB∇2)b + 2λAAāa
2+ λAAā2a2

+2λBBb̄b
2+ λBBb̄2b2+ 2λABāa

2+ λABā2a2− 2λABb̄a
2− λABb̄2a2

+2λBAb̄b
2+ λBAb̄2b2− 2λBAāb

2− λBAā2b2− nAāδ(t)− nBb̄δ(t)]. (13)

If we now integrate out the response fieldsā and b̄ from the functional integral∫
DaDāDbDb̄ exp(−S), we find that the above reaction-diffusion system can be described

exactly by a pair of Langevin-type equations

∂ta(x, t) = DA∇2a(x, t)− 2(λAA + λAB)a(x, t)2+ 2λBAb(x, t)
2+ ηA(x, t)

∂tb(x, t) = DB∇2b(x, t)− 2(λBB + λBA)b(x, t)2+ 2λABa(x, t)
2+ ηB(x, t)

(14)

with noise correlations

〈ηA(x, t)〉 = 〈ηB(x, t)〉 = 0

〈ηA(x, t)ηA(x ′, t ′)〉 = [λBAb(x, t)
2− (λAA + λAB)a(x, t)2]δd(x − x ′)δ(t − t ′)

〈ηB(x, t)ηB(x ′, t ′)〉 = [λABa(x, t)
2− (λBB + λBA)b(x, t)2]δd(x − x ′)δ(t − t ′).

(15)

Hence, as desired, we have constructed a system where in a Langevin-type formalism we
have terms ofboth signs present in the correlator. Thus, we can now attempt to answer the
question of whether this ‘competition’ alters the structure of the theory in low dimensions
where fluctuations are of vital importance.

Power counting on the action (13) reveals that all the reaction rates{λij } have dimension
∼ µ2−d , whereµ denotes a momentum scale. Hence, we expect to find a critical dimension
dc = 2, below which fluctuations change the mean-field behaviour qualitatively and the
theory must be renormalized. As in the pure annihilation model (8), this renormalization
is simple since the diagrammatic structure of the theory does not permit any dressing of
the propagators. Hence, the only renormalization required is that for the reaction rates.
We now defineλ̃AA = λAA + λAB , λ̃AB = λAB , λ̃BA = λBA and λ̃BB = λBB + λBA. The
temporally extended vertex function forλ̃AA(k, s) to one-loop order is given by the sum of
diagrams shown in figure 1 (heres is the Laplace-transformed time variable; time runs from
right to left). The diagrams for the other vertex functions look quite similar. Evaluation
of these one-loop diagrams yields the following form of the renormalized reaction rates:
gij = Cdλ̃ij (k, s)|k2/4=µ2,s=0/Diµ

ε , whereε = 2− d, andCd = 0(2− d/2)/2d−1πd/2 is
a geometric factor. This leads, in a straightforward manner, to the following one-loop RG
beta functionsβij = µ∂gij /∂µ:

βAA = gAA(−ε + gAA)+ gABgBA (16)

βAB = gAB(−ε + gAA + gBB) (17)

βBA = gBA(−ε + gAA + gBB) (18)

βBB = gBB(−ε + gBB)+ gABgBA. (19)

Figure 1. The temporally extended vertex functionλ̃AA(k, s) to one-loop order.
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In fact it can be shown that the above one-loop beta functions are actuallyexact to
all orders in perturbation theory. This is readily accomplished by writing down the full
coupled Bethe–Salpeter equations for the vertices. Diagrammatically, this corresponds to
replacingeither the right-handor left-hand bare vertices in all the one-loop contributions
(see figure 1) by their fully renormalized counterparts. This freedom of choice immediately
implies the relation

λ̃AB(k, s)/λ̃AB = λ̃BA(k, s)/λ̃BA = N(k, s). (20)

After absorbing the diffusivitiesDi into the bare couplings̃λij and the full vertex functions
λ̃ij (k, s), respectively, and introducing the abbreviationIi(k, s) = (2π)−d

∫
ddp [p2 +

(k2/4)+ (s/2Di)]−1, the coupledexact Bethe–Salpeter equations can be explicitly written
as

λ̃AA(k, s)[1+ λ̃AAIA(k, s)] + λ̃AB(k, s)λ̃BAIB(k, s) = λ̃AA (21)

λ̃AA(k, s)λ̃ABIA(k, s)+ λ̃AB(k, s)[1+ λ̃BBIB(k, s)] = λ̃AB (22)

together with a second pair of equations which follow by interchangingA ↔ B in
equations (21) and (22). These coupled linear equations (20)–(22) forλ̃ij (k, s) are solved
by

N(k, s)−1 = [1+ λ̃AAIA(k, s)][1 + λ̃BBIB(k, s)] − λ̃ABλ̃BAIA(k, s)IB(k, s) (23)

and

[λ̃AA(k, s)/λ̃AAN(k, s)] = 1+ [λ̃BB(1− λ̃ABλ̃BA/λ̃AAλ̃BB)]IB(k, s) (24)

[λ̃BB(k, s)/λ̃BBN(k, s)] = 1+ [λ̃AA(1− λ̃ABλ̃BA/λ̃AAλ̃BB)]IA(k, s). (25)

At the normalization point one hasIi(2µ, 0) = Cdµ
−ε/ε, and after some tedious but

straightforward algebra equations (23)–(25) yield again the beta functions (16)–(19).
We can now examine the above equations (16)–(19), which we have just demonstrated

to hold to all orders in perturbation theory, for fixed point solutionsg∗ij defined by
βij ({g∗ij }) = 0. For d > 2 we find, as expected, merely the trivial Gaussian fixed point
where allg∗ij = 0. However, ford < 2, the onlystable fixed points are those describing
uncoupledannihilation processes, i.e.

g∗AB = g∗BA = 0 g∗AA = g∗BB = ε. (26)

Furthermore, there are also other solutions, for example the fixed line

0< c = g∗ABg∗BA 6 ε2/4 fixed but arbitrary

and

2g∗AA = ε ±
√
ε2− 4c 2g∗BB = ε ∓

√
ε2− 4c (27)

but these, like the Gaussian fixed point, turn out to beunstablefor d < 2.
Hence the above annihilation/scattering model (12) asymptotically becomes rather

simple, and in fact lies in the same universality class as single-species annihilation (with
respect to both the decay exponentand amplitude). Hence, each species of particle decays
according to equation (1) ast → ∞ for d < 2. Physically this is a result of the ‘re-
entrancy’ property of random walks—as soon as two particles are in close proximity, they
will rapidly annihilate, even in the presence of scattering processes. Therefore we conclude
that, for this system, the presence of ‘real’ as well as ‘imaginary’ noise has not introduced
any novel behaviour. We finally remark that the above results also apply in the extreme
asymmetric situation where, say,λ̃BA = 0 but λ̃AB > 0 originally, i.e. when there is a
spontaneousunidirectional transformation of pairs ofA particles into pairs ofB particles,
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but not vice versa. At least in this special case, our result that this pairwise transmutation
is irrelevant in the long-time limit, appears non-trivial. For example, in the related case of
DP processes forA, B particles with coinciding critical points, which are coupled via the
reactionA → B, the usual DP critical exponentβ is replaced by a much smaller density
exponent as a consequence of an ensuingmulticritical point [18].

4. The annihilation and fission process

Our second reaction-diffusion system consists of the processes

A+ A→ ∅ and A+ A→ (n+ 2)A (28)

to which we assign the annihilation rateλ and ‘fission’ rateσn. Note that these processes
differ from the ‘branching and annihilating random walks’ [8, 9, 14] mentioned earlier in
that offspring particles can only be produced upon the collision of twoA particles. The
corresponding action derived from the master equation describing reactions (28) reads in
terms of theunshiftedcontinuous fieldŝa(x, t) anda(x, t)

S =
∫

ddx
∫

dt [â(∂t −D∇2)a − λ(1− â2)a2+ σn(1− ân)â2a2] (29)

(the terms depending on the homogeneous, uncorrelated initial density distribution and the
projection state have been omitted here). Once again we point out that this theory is only
valid for unrestricted particle occupation numbers in the microscopic model. It is quite
possible that altering the microscopic rules for site occupancy (for example by allowing
only 0 or 1 particles at a site) may change some of our later conclusions [19]. If we now
proceed by performing the shift̂a = 1+ ā, the effective action becomes

S =
∫

ddx
∫

dt

[
ā(∂t −D∇2)a + (2λ− nσn)āa2

+
(
λ− n(n+ 3)

2
σn

)
ā2a2− σn

n+2∑
l=3

(
n+ 2

l

)
āla2

]
. (30)

If all vertices āla2 for l > 3 are neglected, this field theory becomes equivalent to a
nonlinear Langevin equation

∂ta(x, t) = D∇2a(x, t)+ (nσn − 2λ)a(x, t)2+ a(x, t)η(x, t) (31)

〈η(x, t)〉 = 0 〈η(x, t)η(x ′, t ′)〉 = [n(n+ 3)σn − 2λ]δd(x − x ′)δ(t − t ′) (32)

which again describes competition between ‘real’ noise (associated withσn) and ‘imaginary’
noise (associated withλ). Upon comparison with the model of [17], equations (4), (5), we
see that the annihilation/fission process apparently corresponds to their parametersr = 0,
u = 2λ− nσn, andν = n(n+ 3)σn/2− λ.

Note that it is potentially dangerous to perform the shiftâ = 1+ ā and then to arbitrarily
omit certain nonlinearities [2, 14], due to the discrete symmetryâ → −â, a → −a, under
which the action (29) is invariant (forn even). This symmetry corresponds to local particle
number conservation modulo 2, which is lost in the Langevin description based on (30).
Furthermore, the neglected terms have the same scaling dimension as those retained. We
therefore proceed with the analysis of theunshifted theory (29). We find that both the
annihilation and fission rate have identical scaling dimension∼ µ2−d and thus the upper
critical dimension is again expected to bedc = 2. For d > 2, a description given by the
mean-field equation (i.e. equation (31) without noise) should become qualitatively correct.
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Figure 2. One-loop diagrams for (a) the renormalization of theσn coupling, (b) the generation
of the process 2A → nA from a combination of 2A → (n + 2)A and 2A → ∅, and (c) the
generation of the process 2A→ 2(n+ 1)A by two successive fission reactions.

For nσn < 2λ this leads asymptotically to a density decayn(t) ∼ t−1 (with reduced
annihilation rateλR = λ − nσn/2); for nσn > 2λ, on the other hand, the density grows
rapidly and diverges attc = 1/(nσ − 2λ)n0, wheren0 is the initial density. Thus, there is
no stationary state in the active phase.

We now consider a one-loop analysis of the action (29) ford 6 2. To this order all the
couplings associated with the interaction vertices in (29) are renormalized. For example,
the couplingσn is renormalized by the diagrams shown in figure 2(a). However, in addition
to this, other processes are also generated at this order: 2A → nA (by a combination of
fission and annihilation, see figure 2(b)) and 2A → 2(n + 1)A (by two successive fission
reactions, see figure 2(c)). Furthermore, the mechanisms producing these processes (with
increasingly largen) are not simply restricted to the one-loop level—new particle creation
vertices are effectively generated at each successive order in perturbation theory. Therefore
the number of (relevant) higher-order couplings, each of which requires renormalization,
increases without bound as higher and higher orders of perturbation theory are considered.
Hence, we must conclude that the field theory is non-renormalizable: an infinite number of
renormalizations would be needed to render the theory free from divergences.

Nevertheless some further progress is possible by considering the original master
equation for the annihilation–fission process [20]. Omitting the diffusive terms, we have

∂P ({mi}; t)
∂t

= λlat
∑
i

[(mi + 2)(mi + 1)P ({. . . , mi + 2, . . .}; t)−mi(mi − 1)P ({mi}; t)]

+σ lat
n

∑
i

[(mi − n)(mi − n− 1)P ({. . . , mi − n, . . .}; t)

−mi(mi − 1)P ({mi}; t)] (33)

whereP({mi}; t) is the configuration probability for finding occupation numbers{mi} at
time t , and whereλlat and σ lat

n are the lattice annihilation and fission rates, respectively.
Using the relationm(t) =∑{mi }miP ({mi}; t), equation (33) implies that

dm(t)

dt
= (nσ lat

n − 2λlat)m(m− 1). (34)

Sincemi = 0, 1, 2, . . ., we see thatm(m− 1) is non-negative, and hence thatnσ lat
n = 2λlat

marks the transition point between the active and inactive phases. Note that actually at the
transition (nσ lat

n = 2λlat), the average density will remain constant, whereas in the active
phase it will diverge. These conclusions can be confirmed by studying the shifted action
(30). If we have the equality 2λ = nσn for thebare field-theoretic parameters, then the bare
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cubic coupling vanishes. However, the structure of the higher-order vertices ensures that a
cubic coupling cannot then be regeneratedat any order in perturbation theory. Hence, we
can again conclude that 2λ = nσn is the transition point between the active and inactive
phases. Furthermore in the inactive phase, where the annihilation mechanism dominates, and
the successive generation of an infinite series of fission processes is probably suppressed,
we might expect the density to decay ast−d/2 (for d < 2) due to the strong particle
anticorrelations which emerge as a result of the annihilation process in low dimensions.

However, the non-renormalizability of the field theory means that we are unable to fully
address the properties of either the active phase or the active/inactive transition. This failure
may be associated with the fact that the active phase is not in a stationary state (at least in
mean-field theory, and with unrestricted site occupancymi = 0, 1, . . . ,∞, the density in
this phase diverges in finite time). This behaviour, taken together with the massless nature
of our field theory (i.e. there is no term proportional to the fielda(x, t) in equation (31)),
implies that the transition from the absorbing to the active phase cannot be in the DP
universality class. Rather the transition is closer to being ‘first order’, as suggested by an
exact evaluation of the correlation function at criticality [20]. As field-theoretic methods
seem unable to shed any further light on this problem, we hope that our analysis will
stimulate further work using, for example, exact one-dimensional methods. In addition,
numerical simulations presently in progress seem to indicate that this annihilation/fission
system may display remarkably rich behaviour [19].

5. Summary

In this paper we have studied the effects of various types of noise in diffusion-limited
reactions. In section 2 we emphasized that ‘naive’ Langevin equations (with positive noise
correlators) fail to accurately describe systems controlled by pair reaction processes, where
the noise is in fact ‘imaginary’. Physically this failure is associated with the anticorrelation
of particles in low dimensions. On the other hand, such a naive approach does indeed work
for the Gribov process, where the noise turns out to be ‘real’ (related to particle clustering).

We then studied two diffusion-limited reaction systems with both real and imaginary
noise components: the annihilation/scattering processes (12) and the annihilation/fission
processes (28). We have shown (to all orders in perturbation theory) that the first of these
belongs to the same universality class as the pure annihilation model in dimensionsd 6 2,
while for d > 2 the mean-field rate equations apply. However, the second system displays
a transition between an active and absorbing state, which is not accessible to perturbative
analysis. In both cases, despite the competition between ‘real’ and ‘imaginary’ noise, we
have been unable to recover any of the interesting behaviour discussed in [17]. In fact,
considering that the processes discussed here, along with BARW, are amongst thesimplest
reactions leading to both ‘real’ and ‘imaginary’ multiplicative noise, it is rather unclear
which physicalsystem might be described by the Langevin equation (4) with purely ‘real’
multiplicative noise (5), and thus display the non-trivial effects of [17].
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Tu Y, Grinstein G and Mũnoz M A 1997Phys. Rev. Lett.78 274
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